Benjamin Walter Assignment Spring_System_Oscillation due 01/09/2022 at 02:10pm EET

Problem 1. (1 point) METUNCC/Applied_Math/springs/oscillate-theory.pg

Suppose a spring system with three masses and many springs oscillates at a fundamental mode with

eigenvalue $\lambda = 25$ and eigenvector $\mathbf{v} = \begin{bmatrix} -5 \\ 5 \\ -1 \end{bmatrix}$.

(A) If mass 2 oscillates with an amplitude of 2, then what is the amplitude of oscillation for mass 1? Amplitude = ____

(B) If mass 2 is at maximum height at time t = 5, when will it next be at maximum height? $t = __$

(C) Mass 1 oscillates in the [?/same/opposite] direction as mass 3.

(D) If mass 3 begins at displacement $u_3(0) = -4$ and velocity $u'_3(0) = -2$, then what is its dispacement function?

 $u_3(t) =$ _____

Problem 2. (1 point) METUNCC/Applied_Math/springs/oscillate-2mass-3springs_alt.pg

Consider the following spring system.

$$c_1 = 1, c_2 = 11, c_3 = 3$$

 $m_1 = 3, m_2 = 1$

Write the stiffness matrix
$$K = \begin{bmatrix} --- & --\\ -- & -- \end{bmatrix}$$

Write the matrix $M^{-1}K = \begin{bmatrix} --- & --\\ -- & -- \end{bmatrix}$

Find the eigenvalues and eigenvectors of $M^{-1}K$

Smaller eigenvalue = ____ with eigenvector [_____]
Larger eigenvalue = ____ with eigenvector [_____]

If this spring system oscillates without any external forces present, then the position of each mass satisfies the following general formula:

$$\mathbf{u}(t) = \left(a_1 \cos\left(\underline{} t\right) + b_1 \sin\left(\underline{} t\right)\right) \begin{bmatrix} \underline{} \\ \underline{} \end{bmatrix} + \left(a_2 \cos\left(\underline{} t\right) + b_2 \sin\left(\underline{} t\right)\right) \begin{bmatrix} \underline{} \\ \underline{} \end{bmatrix}$$

If the system begins oscillation with initial position $\mathbf{u}(0) = \begin{bmatrix} 1\\ 2 \end{bmatrix}$ and initial velocity $\mathbf{u}'(0) = \begin{bmatrix} 0\\ 0 \end{bmatrix}$ then the position of the masses at time *t* is given by

$$u_1(t) = \underline{\qquad} \\ u_2(t) = \underline{\qquad} \\$$

Consider the following spring system.

$$c_{1} = \frac{2}{3}, c_{2} = 2, c_{3} = 0, c_{4} = 2$$

$$m_{1} = \frac{2}{3}, m_{2} = 2$$

Write the stiffness matrix
$$K = \begin{bmatrix} --- & -- \\ -- & -- \end{bmatrix}$$

Write the matrix $M^{-1}K = \begin{bmatrix} --- & -- \\ -- & -- \end{bmatrix}$

Find the eigenvalues and eigenvectors of $M^{-1}K$:

• Smaller eigenvalue = ____ with eigenvector $\begin{bmatrix} --- \\ --- \end{bmatrix}$ • Larger eigenvalue = ____ with eigenvector $\begin{bmatrix} -___ \\ -__ \end{bmatrix}$

If this spring system oscillates without any external forces present, then the position of each mass satisfies the following general formula:

$$\mathbf{u}(t) = \left(a_1 \cos\left(\ \underline{\ } t \right) + b_1 \sin\left(\ \underline{\ } t \right) \right) \left[\ \underline{\ } \\ \underline{- \ } \\ + \left(a_2 \cos\left(\ \underline{- \ } t \right) + b_2 \sin\left(\ \underline{- \ } t \right) \right) \left[\ \underline{- \ } \\ \underline{- \ } \\ 4 \end{bmatrix}$$

If the system begins oscillation with initial position $\mathbf{u}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and initial velocity $\mathbf{u}'(0) = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ then the position of the masses at time *t* is given by $u_1(t) = \underline{\qquad}$

 $u_2(t) =$

Problem 4. (1 point) METUNCC/Applied_Math/springs/oscillate-detatched.pg

Consider the following unattached spring system.

 $c_1 = 2,$ $m_1 = 1, m_2 = 1$

Write the stiffness matrix
$$K = \begin{bmatrix} - & - \\ - & - \end{bmatrix}$$

Write the matrix $M^{-1}K = \begin{bmatrix} - & - \\ - & - \end{bmatrix}$

Find the eigenvalues and eigenvectors of $M^{-1}K$:

Smaller eigenvalue = ____ with eigenvector [____]
Larger eigenvalue = ____ with eigenvector [____]

If the spring system oscillates beginning with initial displacement $\mathbf{u}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and initial velocity $\mathbf{u}'(0) = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$ then compute the displacements of the masses at time t.

$$u_1(t) = \underline{\qquad}_0$$
$$u_2(t) = \underline{\qquad}_0$$

Find a nonzero initial velocity vector such that the displacement of the masses will be bounded.

•
$$\mathbf{u}'(0) = \begin{bmatrix} \cdots \\ \cdots \end{bmatrix}$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America