Problem 1. (1 point) METUNCC/Applied_Math/springs/oscillate-theory.pg
Suppose a spring system with three masses and many springs oscillates at a fundamental mode with

$$
\text { eigenvalue } \lambda=25 \quad \text { and } \quad \text { eigenvector } \mathbf{v}=\left[\begin{array}{c}
-5 \\
5 \\
-1
\end{array}\right]
$$

(A) If mass 2 oscillates with an amplitude of 2 , then what is the amplitude of oscillation for mass 1 ? Amplitude = \qquad
(B) If mass 2 is at maximum height at time $t=5$, when will it next be at maximum height?
$t=$ \qquad
(C) Mass 1 oscillates in the [?/same/opposite] direction as mass 3 .
(D) If mass 3 begins at displacement $u_{3}(0)=-4$ and velocity $u_{3}^{\prime}(0)=-2$, then what is its dispacement function? $u_{3}(t)=$

Problem 2. (1 point) METUNCC/Applied_Math/springs/oscillate-2mass-3springs_alt.pg

Consider the following spring system.

Write the stiffness matrix $K=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$
Write the matrix $M^{-1} K=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$

Find the eigenvalues and eigenvectors of $M^{-1} K$

- Smaller eigenvalue $=\ldots$ with eigenvector $\left[\begin{array}{l}- \\ -\end{array}\right]$
- Larger eigenvalue $=\ldots$ with eigenvector $\left[\begin{array}{l}- \\ -\end{array}\right.$

If this spring system oscillates without any external forces present, then the position of each mass satisfies the following general formula:

$$
\begin{aligned}
\mathbf{u}(t)= & \left(a_{1} \cos (\ldots t)+b_{1} \sin (\ldots t)\right)\left[\begin{array}{l}
- \\
\\
\end{array}+\left(a_{2} \cos \left(_t\right)+b_{2} \sin \left(_t\right)\right)\left[\begin{array}{l}
- \\
2
\end{array}\right]\right.
\end{aligned}
$$

If the system begins oscillation with initial position $\mathbf{u}(0)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and initial velocity $\mathbf{u}^{\prime}(0)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ then the position of the masses at time t is given by

$$
\begin{aligned}
& u_{1}(t)= \\
& u_{2}(t)=
\end{aligned}
$$

Problem 3. (1 point) METUNCC/Applied_Math/springs/oscillate-2mass-4springs_alt.pg

Consider the following spring system.

Write the stiffness matrix $K=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$
Write the matrix $M^{-1} K=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$

Find the eigenvalues and eigenvectors of $M^{-1} K$:

- Smaller eigenvalue $=_$_ with eigenvector $\left[\begin{array}{l}- \\ \square\end{array}\right]$
- Larger eigenvalue $=_$with eigenvector $\left[\begin{array}{l}-\end{array}\right]$

If this spring system oscillates without any external forces present, then the position of each mass satisfies the following general formula:

$$
\begin{aligned}
\mathbf{u}(t)= & \left(a_{1} \cos (\ldots t)+b_{1} \sin (\ldots t)\right)[\square] \\
& +\left(a_{2} \cos \left(_t\right)+b_{2} \sin (\ldots t)\right)\left[\begin{array}{l}
- \\
4
\end{array}\right]
\end{aligned}
$$

If the system begins oscillation with initial position $\mathbf{u}(0)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and initial velocity $\mathbf{u}^{\prime}(0)=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ then the position of the masses at time t is given by

$$
\begin{aligned}
& u_{1}(t)=\square \\
& u_{2}(t)=\square
\end{aligned}
$$

Problem 4. (1 point) METUNCC/Applied_Math/springs/oscillate-detatched.pg

Consider the following unattached spring system.

$c_{1}=2$,
$m_{1}=1, m_{2}=1$

Write the stiffness matrix $K=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$
Write the matrix $M^{-1} K=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$

Find the eigenvalues and eigenvectors of $M^{-1} K$:

- Smaller eigenvalue $=-\quad$ with eigenvector $[\square]$
- Larger eigenvalue $=_$with eigenvector $\left[\begin{array}{l}-\end{array}\right]$

If the spring system oscillates beginning with initial displacement $\mathbf{u}(0)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and initial velocity $\mathbf{u}^{\prime}(0)=$ $\left[\begin{array}{l}6 \\ 2\end{array}\right]$ then compute the displacements of the masses at time t .

$$
\begin{aligned}
& u_{1}(t)=\square \\
& u_{2}(t)=\square
\end{aligned}
$$

Find a nonzero initial velocity vector such that the displacement of the masses will be bounded.

- $\mathbf{u}^{\prime}(0)=\left[\begin{array}{l}- \\ -\end{array}\right]$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

